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Abstract: In this paper we define a set of composition operations and descriptive based
expressions to construction of composite Hybrid Stochastic Petri Nets (HSPN) for
performance discrete-continuous modeling of computer systems. We consider the
enhancements of our approach for a performance modeling of multiprocessor system.
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1. INTRODUCTION

Performance evaluation is concerned with the
description, analysis and optimization of the dynamic
behavior of computer systems. Such systems, which
are described by both discrete and continuous
variables, are usualy referred to as hybrid systems
and are very complex to be modeled and analyzed.
The hybrid systems are characterized by having non-
trivial interactions between the discrete and
continuous parts of the model; in this case a
modeling environment is desirable which allows a
unified specification of the complete system to be
studied. In this area more main formalisms have been
discussed in the literature, namely Hybrid Petri Nets
(HPN) (Alla, 1998), Fluid Stochastic Petri Nets
(FSPN) (Horton, 1996) and Stochastic HPN (HSPN)
described by second order partial differential
equations (PDES) in the continuous variables
representing the fluid levels (Gutuleac, 2002).
Practical methodologies in engineering and computer
science take a structural approach, designing systems
from smaller subsystems and components, which can
be combined and reused.

In (Gutuleac, 2004) is presented a method for the
compositional construction of this type models. The
approach of a Descriptive Expressions (DE),
presented in this paper for compositional
construction of HPN and HSPN models, is intended
to solve certain problems of compositionality in its
formalisms without loosing the benefits of visual

concurrent semantics. The rest of this paper is
structured will be the following. In Section Il we
briefly introduce second order HSPN formalism. We
then proceed, in Section 11, to present a descriptive
compositional approach for the construction of
HSPN based models, covering both functional and
stochastic behavior. We define a set of compositional
operations and descriptive expressions on HSPN
based models. This incorporate place and transition
fusion. We give a number of examples to illustrate
this synthesis of HPN and HSPN models. In Section
IV we present one example of descriptive
compositional  HSPN models applications for
performance modeling of pipe-line multiprocessor
systems. In the final Section we present the
conclusions of this work and forthcoming research
efforts.

2. COMPOSITE LABELED HPN

In this section, we define a variant of HPN called
composite labeled HPN. LetlL be a set of
labels | =L, E L, L, CL, =4 Each place p labeled
I(p)T L, hes alocal state and transition t, has
action labeled as|(t;)T L.

Definition 1. A composite labeled HPN structure isa
11-tuple HG = < P, T, Pre, Post, Test, Inh, K, Kp,
G, Pri, | >, where: P is the finite set of places

partitioned into a set of discrete places Pp, and a set
of continuous places Pc, P=P,E Pc, Pp C Pc= /.



The discrete places may contain a natural number
of tokens, while the marking of acontinuousplace is
a non-negative real number (fluid level). In the
graphical representation, a discrete place is drawn as
asingle circle while acontinuous place is drawn with
two concentric circles; Tisafinite set of transitions,
TC P = A, that can be partitioned into a set Tp of
discrete transitions and a set Tc of continuous
transition, T=Tp E Tc, To C Tc = A. A discrete
transition tj| Tp is drawn as a black bar and
continuous transition tj] Tc is drawn as a rectangle;
Pre, Test and |nh:p° T ® Bag(P) respectively is a
forward flow, test and inhibition functions. Bag(P) is
a multiset over P. ThePost:T" P ® Bag(P)is a
backward flow function in the multi-sets of P, where
defined the set of arcs A and describes the marking-
dependent cardinality of arcs connecting transitions
and places. The set of arcs A is partitioned into
five subsets: Aq, As, An, Ac and A.

The subset Ay contains the discrete normal arcs
which can be seen as a function Ag:
(P, T,)E(Tp " P,))® IN, and continuous set

arcsAs: (P, " To)E{ T, P.))® IR,. The arcs
Aq and As, are drawn as single arrows. The subset A,
contains the discrete inhibitory arcs Anp:
(P, T® IN, or continuous inhibitory arcs

(P." T)®IR,. These arcs are drawn with a

small circle at the end. The subset A . defines the
continuous  flow arcs Ac (P~ Te)

E(T.  P.)® IR, these arcs are drawn as

double arrows to suggest apipe. A test A; input arcis
directed from a place of any kind to a transition of
any kind, A¢ (P, " T)® IN, or (PR " T)® IR,
and are drawn as dotted single arrows. It does not
consume the content of the source place. The arc of
net is drawn if the cardinality is not identicaly zero
and non-zero cardinality of arcsis labeled next to the
arc with a default value being 1. The IN, and IR is

respectively the set of discrete and real nhonnegative
numbers; K, :P, ® IN, is the capacity of dscrete

places, and by default it is ¥ , i.e. being infinite
value. The functionK, : P, ® IR, E {¥ } describes

the fluid lower bound x™" and upper bounds x™*

on each continuous place. This X{™ by default it is

¥ | i.e. being infinite value and bound has no effect
when it is set to infinity. Each continuous place has
an implicit lower bound at level is O; The guard
function G: T~ Bag(P) ® {True, False} is defined

for each transition. For tI T a guard function g(t, M)
is a Boolean function that will be evaluated in each
marking M, and if it evaluates to true, the transition
may be enabled, otherwise t is disabled (the default
value is true); Pri: To®IN defines the priority
functions for the firing of each transition. The
enabling of a transition with higher priority disables

all the lower priority transitions; | :PET® L ,isa

labeling function that assigns a label to a place and a
transition. In this way that maps place (or
transition) name into condition (or action) names

that I(p)=I(p,)=b but p;*p, (or
I(t;)=1(t)=abutt;*t,). ]

Figure la and Figure 1b summarizes the all possible
ways of placing arcs in a HN net for discrete
transition and continuous transition, respectively.
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Fig. 1. All the possible ways of placing arcsin anet.

Definition 2. A marked composite labeled HPN net is
apar HN = < HG, Mg >, where HG is acomposite
labeled HPN structure (see Def. 1) and Mo=(mo, X, )

istheinitial marking of the net.

The current marking of net is M=(m, x), where
m:P, ® IN, andx:p. ® IR,. The vector-column
m=(mp,m230," p,T P,) with mp, is the
number m, of tokens in discrete place, and it is
represented by the black dots.
The X =(X. b, , X 3 X" ," b, T P.) is vector-
column, where X, b, is the fluid level X, in
continuous placeb, , and it isthereal number.  ®
Definition 3. A conposite labeled HSPN net asa 3-
tuple, SHN =< HN, g, V >, where:

HN is a marked composite HPN, (see def. 2), where
the set of discrete transitions Tp is partitioned into

To =T,ET,, T,CT,=0 so thatT, is a set of
timed transitions (exponentially distributed firing)



and T, is a set of immediate transitions (fire in zero
time once they are enabled). The Pri(To)>Pri(T, ). A

timed transition tl T is drawn as a black

rectangle and has a firing rate is associated to it. An
immediate transitions ;| T; is drawn with a black
thin bar and has a constant zero firing time. Let
T(M) denote the set of enabled transitions in current
M=(m,x); q:T,  Bag(P)® IR, isthefiring speed
function associated with the discrete transitions Tp S0
that: @) thus a timed transitions tj T.(M) is enabled

in current (tangible) marking M , it fires with rate
g(t, M)=I1(t,M ). Note once again, we do allow
the firing rate to be dependent on fluid levels; b) thus
a immediate transitions t1 T (M)is enabled in

current (a vanishing) marking M, it fires with
probability:

q(t,M)=q(t,M)/ “ éM )q(t' ,M);

T
V:T. Bag(P)® IR,is the marking-dependent
fluid rate function of timed continuous
transitionsTC . Thus rates appear as labels next to the

continuous timed transitions. If t jT T, is enabled
in tangible marking M it fires with fluid rate V;(M),
which is a normally distributed random variable, that
is specified by the distributions expectation v(t,M)
and the squared coefficients Kv(t,M) of variance
S 2 (t,M)=Vv(t, M)>Kv(t,M). n
Enabling and Firing of Transitions. Given at; T,
we denote 't; ={p, | P:Pre(p,t;)>q the input
and t.={p 1 P:Post(p,t;) >0} output set places of
tj, and with °t, ={p T P:Inh(p,,t,)>0} the
inhibition and 't, ={p, | P:Test(p,,t;)>0 the test
set places of transition t;, respectively. Also, in
following we denote by u, 1 T. the continuous
transitionsand by b, T P. the continuous places can

be distinct it between discrete transitions and
continuous places, respectively. Let T(M) the set o
enabled transitions in current marking M. We say that
adiscrete transition t; T T, (M) isenabled in current
marking M if the following logic expression
(enabling condition ec; (t;) ) is verified:

ec,(t)=( U (m > Pre(p.1)) &
(U (m <Inh(p,.t;))&
" pd L
(U, (m > Test(p;.t)) &

1

(U ((K,- m)2 Post(p,.t)))&

"pdt

(0 2 Pebt)e (U (<

Inh(b,.t) & ( mqt (x @ Test(b,t;))&

(U (Ky- %)? Post(x,,,)& 9t M) -

Y

The transition t 1 T (M)fire if no other
transition t, T T, (M) with higher priority has

enabled. Also, we say that a continuous transition
ujT T.(M)is enabled and continuously fire in

current marking M if the following logic expression
(the enabling condition ec,(u;) ) is verified:

ec.)=( U (x>0& (U (M <
Inh(pu; ) & (Y (2 Test(pu,) &
(¥, 4 <Infb,u;) & gt M) &
(U, 052 Tet(0,u))&
( b:T:Ju'j((Kb- Xn) 3V, XPost(x,,U;))

and no transition with higher priority has concession.
If an immediate discrete transition has concession in
marking M = (m, x), it is enabled and the marking is
vanishing. Otherwise, the marking is tangible and
any timed discrete transition with concession is
enabledinit.

An immediate discrete transition t; enabled in
marking M = (m, x) yields anew vanishing marking
M’ = (m', x. We can write (m, X) [tj >(m’, x). If the
marking M = (m, x) is tangible, fluid could
continuously flow through the flow arcs A; of
enabled continuous transitions into or out of fluid
places. As a consequence of this, a transition t. is
enabled at M iff for every pT1 -t x(p)>0, and its

enabling degreeis:
enab(t.,M)=min ol ,t{x(pc)/ Pre(pe, to)}

c?

Inthe HN, the potential rate b, (M) of change of fluid

level in place piT P. in marking current M is given

by: b,(M)= § [V, (M)-V,(M)] Where, for any
I T(M)

givent1 T, V(M) is an input fluid rate of fluid
placepi P, and V,, (M) is an output fluid rate of

this place. We allow the firing rates and the enabling
functions of the timed discrete transitions, the firing
speeds and enabling functions of the timed
continuous transitions, and arc cardinaities to be
dependent on the current state of the HSN, as defined
by the current markingM (t ).

The reachability graph of HSN are isomorphic to
hybrid continuous-time Markov chains HCMC) and
this describe the dynamics of an HSN can be
represented by a system of partial differential equa-
tions (PDE) in a probability density of state. In
(Gutuleac, 2002) is derived thus type of equations
which describe the steady-state behavior of the
underlying HCMC of aHSN.



In the following, if not are mentioned apart, we
assume that Pri(tj)) = 0 and g(tj,M) = 1 and therefore
we can omit Pri(t;) and g(t,M) in the forma
definitions of DE element of compositional
operations and itsHSN translations.

3. DESCRIPTIVE EXPRESSIONS OF HPN

Due to the space restrictions we will only give a brief
overview to this topic and refer the reader to
(Gutuleac, 2004) and the references therein.

In following for abuse of notation, labels and name
of transitions/ places are the same.

We introduce the concept of a basic descriptive
element (bDE) for a basic HPN (bHN) as following:

bDE = |i' m’p, [W" W' ][:*. The trandation of
this bHN is shown in figure 2a, where respectively

tj = P, is input transition (action typea;) and

t, = p; is the output transition (action type a,) of
placep, T P with mPT {m,(p),%, (b)} initia
marking, and respectively the flow type relation
functions W™ = Pre(t;, p,)and W~ =Post(p,,t,),
which return the multiplicity of input and output arcs
of the discrete placep i p, or the continuous
placep, =h 1 P, respectively.

The derivative elements of bDE are
forp, =/ W =0 is|;' m’p [W] with final

placep, of t; and for

=AW =0
ism’p, W, | with entry placep, of t, (see figure
2b). If the initiad markingm’of place p;is a zero
tokens (or fluid level) we can omit m°=0in bDE.

By default, if the type of action a isnot mentioned

this to match the name of atransition t. From a bDE
we can build more complex DE of PN components
by using composition operations.

w pim w
I © 1,
* Pi a Pi
P,
Iw =0 (b) W' =0 K

Fig. 2. Trandationin bHN (a) of bDE
and (b) its derivatives.

Also by default, if W' = W™ =1, we present bDE

and it derivatives as following:
aj 0 a a
|tij m’p, |.*, Itj’m"p. or m'p, |;*.

Definition 4. A descriptive expression (DE) of a
labeled composite HN is either bDE or a composition
of DEaHN: DE:=bDE|DE*DE| oDE,

where * represents any binary composition operation
and o any unary operation. |
Descriptive Compositional Operations In the
following by default the labels of HN and HN are
encoded in the name of the transitions and places.
The composition operations are reflected at the level
of the DE components of HN models by fusion of
places, fusion of transitions with same type and same
name (label) or sharing of as subnets.
Place-Sequential Operation. This binary operation,
denoted by the “ | " sequential operator, determines
the logic of a interaction between two local states
p, (pre-condition) and p, (post-condition) by t;
action that are in precedence and succeeding
(causality-consequence) relation relative of this
action. Sequential operator is the basic mechanismto
build DEs of HNs models.

The sequential operation is an associative, reflexive
and transitive property, but is not commutative

operation. The DE1=m’p [W] |f‘JJ m’ p, W, ]

tip, (W]['mPp, [W] means the fact that the
specified conditions (local state) associated with
place- symbol p. are fulfilled always happens before
then the occurrence of the conditions associated with
place-symbol p, by means of the action t;. The

translation of DE1 in HN1is shows in figure 3. Also,
the PN modeling of the iteration operation is
obtained by the fusion of head (entry) place with the
tail (final) place that are the same name (closing
operation) in DE which describes this net. The self-
loop of HN2 described by an:

DE2=m’p [W]|;'mip, W,] =m’p, W]},
itisthetest operator “~", i.e. represent the test arc.
pi .
N Wi Wi
e RO

Fig. 3 Translation of DE1 in HN1.

Inhibition Operation. This unary oper“ation is
represented by inhibitory operator “ (place-

symbol with overbar) and it DE3=n{p, W]’

describe the inhibitor arc inHN models with a weight
function (arc multiplicity) W, =Inh(p,t,).
Synchronization Operation. This binary operation is
represented by the“ - ” or “ U” join operator describe
the rendezvous synchronization (by transition t;) of
a two or more conditions represented respectively by
symbol-place p,T 't;, i =1,n, i.e. it indicate that all
preceding conditions of occurrence actions must have
been completed. Also, this operation is a
commutative, associative and reflexive property.

Split Operation: This binary operation represented by
the “a” or “(a)’ split or fork operators and it

describe, determine the causal relations between
activity t; and its post-conditions: after completion of



the preceding action of t, concomitantly several other
post-condition can take occurs in paralel (“ message
sending”). Property of split operation is a
commutative, associative and reflexive.

Thus the HN shows in figure 1a and figure 1b are
described by the DE’'sA and B, respectively:

A= ALl (p,aby); B= Bi|, (6.35b,ab,) with
AL= (2.4b 2p, X2 p, X3P, XL.5b, %6, *4.50,) |, and
B1=(2.4b, P, xP, 3.6, >0, X4.5D,) |,
Competing Parallelism Operation. This compo-
sitional binary operation is represented by the “ U”
competing parallelism operator, and it can be applied
over two HNp with DEA = A and HNg with DEg = B
or internaly into resulting HNr with DEgR = R,
between the places of a single HNgr which the
symbol-places with the same name are fused,

respectively.
We can then represent the resulting DEgr=
R =AU B as a set of ordered pairs of places with the

same name to be fused, with the first element
belonging to A the second to B. The fused places will
inherit the arcs of the place in A and B. Also, this
compositional binary operation is a commutative,
associative and reflexive property.

Precedence Relations between the Operations We
introduce the following precedence relation between
the compositional operations in the DE: a) the
evaluation of operations in DE are applied left-to-
right; b) an unary operation binds stronger than a
binary one; c) the “- "operation is superior to”/ ” and
“a”, in turn, its are superior the "U” operation.
Further details on definitions, enabling and firing
rules, and evolution for discrete part of HN can be
found in (Gutuleac, 2004) as they require a great deal
of space.

4. DISCRETE- CONTINUOUS MODELING OF
PIPE-LINE MULTIPROCESSOR SY STEM

In order to illustrate HSPNs we give a performance
modeling  example.  Consider a  pipeline
multiprocessor system consisting of three processors
elements PE;, j=1,2,3. Each element PE; can be in

two local states a;T {0, 3. In the active state
a; =1, the element PE; with speed V; will in

continuous mode decrease the level x. of buffer by,
k=4-j and in the same time it will in continuous mode
increase the level x; of buffer b, j=1, 2, 3. In passive

statea ; =0 it will not change them any more. The
time sojourn of each element PE; in the respective
states a; =1 0r a; =0 are negative exponentially
distributed random variable withrate | ; or m.

Hence the behavioral discrete and continuous
behavior process of a PE; can represented by the
descriptive expression DE, and DE_ respectively.
The superposed discrete-continuous behavior process
of system is represented by the following descriptive

expression DEgys of HSN model:
. 3
DE,, = DE, UDE,, DE, = i:Ul( Pl P I R
DE = (p05) i b U (P, X0) 1 b, U(pyy) I3 s

Figure 4 show the translation of DEgysin HSNgys.
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Fig. 4. Translation of DEgys in HSNgys.

The blocking effect of PE; in a, = lisrepresented by
capacity K, = hj of buffer b if this isfull.

In the next, to we will note x;=X, X,=y and xz=z.

The net HSNgs. is bounded, live and reinitialized
again because it has four P-invariants that cover all
places: m(p;) + m(p;+3)=1, j=1,2,3 for discrete places
and x+y + z=h for continuous places.

For initial marking m(p;)=1, Xo=Yyo=0, 2= hsz=h;+h;
then the current state of HSPN1 can be described by
7-tuple (aaa,, xy, rgx,rgy), where 3  and rsy ae

respective dynamic balances of buffers b, and b,.
The analytical analysis of underlying HCMC of this
HSNs,s model in general case is very difficult. For
this analysisto be must use the special tool.

Here we give asimplified case forl,=|,=0, where
the elements PE, and PEjz aways will be in active
state a, =a, =1 and in this way, the element PE,
(respective PE3) with the speed V, (respective V),
will transfer the content of buffer by (respective by) in
buffer b, (respective bg).

Ve Vv, Vel N

. Vs Vi

/ A \
0, Oy; V.~ 0, xy; 1, xy; 1, hihs;
0V, V¥V d 2, \CVa Vv, 0,0
\ DA 774 ~ /

¥ N T ey

Fig. 5. CHMC1 of HSNgys.

The behavior of HSNgs depends of rapport between
speeds V. For V1 > V, > V3 the chain CHMC1, with
the respective internal and boundary states, in
considerate case, is represented in figure 5, where the
discrete marking is m 1 {0,1 because just the
element PE; can be or in passive or in active state.

Let fi(x, y) denote the steady-state fluid density of
CHMC1 in current marking (m, xy), i=0,1. For each



internal state (m, xy; Vx, V), 0<x<h; and O<y<h, of
the chain CHMCIL the fi(x, y) obeys the following
system of partial differential equations (PDE):

(X, y) (X, y)
-V 0 -V 0
2 XT +(V, - V,) "T +
mfo (X, y) =1,f,(X, y); @)
V- V,) T (Y) v, - V) MG
x Ty

L y)=mf(xy) -
For level Z= X+ Y the total values of two buffers

b, and b, using the same approach, with the
stationary condition mAN, <1, /(V, - V) we obtain:

J o@=m>p,(Qe” N, ,

j 1(2) :V3 )f (l)(z)/(vl - Vs) '

n=m/Ng- 1 (V- V)
z=mVy(V; - Vo) /(1 +m)( Vs - m(V; - Va))).

Because we know some filled and emptied numeric
behaviour characteristics of buffer b; for
O<h<¥,i=123 we can look the solution of PDE

equations in following multiplicative form:
fo(x ¥) =] o(X) ¥ o(¥),
06 y) =] 109 1(y) = Axty(X, ), where
Jo(¥) =Coxe™, y ((y) =e*¥, @)
J1(¥) =ad o(X),  yi(y)=ay o(y),
glzrlml/\/z- | 1/(\/1'\/2)' a, = A/al’
a =V3/(V2 - V3)'
The value C is a constant obtained from the

normalization condition, but g and A are obtained
like solution of characteristic equation of system

PDE (1): A*+bxA- r =0, where r =1, /m,
b:1+V1/V2 - (I’ (2\/1 - VZ)/(Vl - Vz))'
From this characteristic equation and from condition

that density probability always is a positive value we
obtain only one positive solution, A>0. Using what

we determine g, :(Am +gV, - | )/(v2 - V3)WhiCh give
the second stationary condition Am > - gv,-

To write the boundary equation directly from graph
of chain CHMC1 we introduce the notation: p (0) or

p,(h). thich are probabilities of boundary states of

buffer by for x=0 or x=hy, but Q(0) or Q(h,) of buffer
b, for y=0or y=h,, respectivelly.
For each state with w=V,N, we can write the

steady-state boundary equations:
wi o0, () =Vad o ()W, () = (V- Va) % 4 (hy);
Wl XQ(hy) =(V; - V5)4 1(hy); m>Po(0) = (V; - V) 1(0);
m>Qy(0) =V; % ,(0); M>*Q(0)y o(hy) =V3 ,(0)Q(h).
The solution of thisequation system is given by:
po(o) :C>Gi><\/l- Vz)/m,
Q,(0) =V, /m; py(h) =cA, /i, >e%h,
Qo(hz) = (Vl B Vz)/(vz B Vs) e,

Ql(hZ) = (Vz - Va)az/(\M 1) e
Taking in consiAderaIion thus relations we obtain the
average levels Xand yin buffersb; and by:

x=CoAVh/ml L +@+a) @ - D/oZ) e + @+ a)/g?|»
9=Co{(h,((V, - V) AV, - Va) + (V, - V3)a, /mb ) + D] »

where D = (1+a,)(g;h, - D/g7)e*™ +(1+a,)/9; -
The time redundancy of system is a ¢ =gy, ad

t, =9IV, The some considerations hold for the
throughput of system.
CONCLUSIONS

In this paper we have defined a set of descriptive
composition operation and descriptive expressions
for the creation of HSPN models from the behavioral
state based discrete-continuous process of system
components. The descriptive compositional approach
can preserve the functiona structure of the model
and support several type of communication between
components. In this way we support the performance
modeling of distributed and parallel systems where
both synchronous and asynchronous communication
isrequired. To illustrate the use of this approach, we
apply them to a performance modeling a pipe-line
multiprocessor system.

The translation rules of descriptive expressions
into HSPN model summarized and illustrated in this
paper suggest that it may be possible to develop a
tool to combining the visualization of small
components by mean of HSPN and the composition
mechanisms of this approach.
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