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1. INTRODUCTION  

 
Performance evaluation is concerned with the 
description, analysis and optimization of the dynamic 
behavior of computer systems.  Such systems, which 
are described by both discrete and continuous 
variables, are usually referred to as hybrid systems 
and are very complex to be modeled and analyzed.  
The hybrid systems are characterized by having non-
trivial interactions between the discrete and 
continuous parts of the model; in this case a 
modeling environment is desirable which allows a 
unified specification of the complete system to be 
studied. In this area more main formalisms have been 
discussed in the literature, namely Hybrid Petri  Nets 
(HPN) (Alla, 1998), Fluid Stochastic Petri Nets 
(FSPN) (Horton, 1996) and Stochastic HPN (HSPN) 
described by second order partial differential 
equations (PDEs) in the continuous variables 
representing the fluid levels  (Gutuleac, 2002). 
Practical methodologies in engineering and computer 
science take a structural approach, designing systems 
from smaller subsystems and components, which can 
be combined and reused.  
In (Gutuleac, 2004) is presented a method for the 
compositional construction of this type models.  The 
approach of a Descriptive Expressions (DE), 
presented in this paper for compositional 
construction of HPN and HSPN models, is intended 
to solve certain problems of compositionality in its 
formalisms  without loosing the benefits of visual 

concurrent semantics. The rest of this paper is 
structured will be the following. In Section II we 
briefly introduce second order HSPN formalism. We 
then proceed, in Section III, to present a descriptive 
compositional approach for the construction of 
HSPN based models, covering both functional and 
stochastic behavior. We define a set of compositional 
operations and descriptive expressions on  HSPN 
based models. This incorporate place and transition 
fusion. We give a number of examples to illustrate 
this synthesis of HPN and HSPN models. In Section 
IV we present one example of descriptive 
compositional HSPN models applications for 
performance modeling of pipe-line multiprocessor 
systems.  In the final Section we present the 
conclusions of this work and forthcoming research 
efforts. 
 

2. COMPOSITE LA BELED HPN 
 
In this section, we define a variant of HPN called 
composite labeled HPN. Let L  be a set of 
labels

TP LLL ∪= , ∅=∩ TP LL . Each place
ip  labeled 

Pi Lpl ∈)(  has a local state and transition 
jt  has 

action labeled as Tj Ltl ∈)( .  

Definition 1. A composite labeled HPN structure is a 
11-tuple ΓH  = < P, T, Pre, Post, Test, Inh , Kp , Kb, 
G, Pri, l >, where: P is the finite set of places 
partitioned into a set of discrete places  PD, and a set 
of continuous places  PC , P=PD∪ PC , PD ∩ PC =∅ .  



The discrete places may contain a natural number 
of tokens, while the marking of a continuous place is 
a non-negative real number (fluid level). In the 
graphical representation, a discrete place is drawn as 
a single circle while a continuous place is drawn with 
two concentric circles;  T is a finite set of transitions, 
T ∩ P = ∅ , that can be part itioned into a set TD of 
discrete transitions and a set TC  of continuous 
transition, T =TD ∪ TC , TD ∩ TC = ∅ . A discrete 
transition tj∈TD is drawn as a black bar and 
continuous transition ti∈TC  is drawn as a rectangle;  
Pre, Test and )(: PBagTPInh →×  respectively is a 
forward flow, test and inhibition functions. )(PBag  is 
a multiset over P. The )(: PBagPTPost →× is a 
backward flow function in the multi-sets of P, where 
defined the set of arcs A and describes the marking-
dependent cardinality of arcs connecting transitions 
and places. The set of arcs A is partitioned into 
five subsets: Ad , As , Ah, Ac and A t . 
The subset Ad contains the discrete normal arcs  
which can be seen as a function Ad: 
((

DD TP × ) ∪ ( DD PT × ))
+→ IN and continuous set 

arcs As : (( DC TP × )∪ { CD PT × )) +→ IR . The arcs 
Ad and As, are drawn as single arrows. The subset Ah 
contains the discrete inhibitory arcs A h: 
( TPD × )

+→ IN  or continuous inhibitory arcs  

( TPC × )
+→ IR . These arcs are drawn with a 

small circle at the end. The subset A c defines the 
continuous flow  arcs  Ac: (( CC TP × ) 

∪ ( CC PT × )) +→ IR , these arcs are drawn as 
double arrows to suggest a pipe. A test At  input arc is 
directed from a place of any kind to a transition of 
any kind, A t: ( TPD × )

+→ IN  or ( TPC × ) +→ IR  
and are drawn as dotted single arrows. It does not 
consume the content of the source place. The arc of 
net is drawn if the cardinality is not identically zero 
and non-zero cardinality of arcs is labeled next to the 
arc with a default value being 1. The

+IN  and +IR  is 
respectively the set of discrete and real nonnegative 
numbers; +→ INP:K Dp  is the capacity of discrete 

places, and by default it is ∞ , i.e. being infinite 
value. The function }{IRP:K Cb ∞∪→ +  describes 

the fluid lower bound min
ix  and upper bounds max

ix  

on each continuous place. This max
ix  by default it is 

∞ , i.e. being infinite value and bound has no effect 
when it is set to infinity. Each continuous place has 
an implicit lower bound at level is 0; The guard 
function →× )(: PBagTG {True, False} is defined 

for each transition. For t∈T a guard function g(t, M) 
is a Boolean function that will be evaluated in each 
marking M, and if it evaluates to true, the transition 
may be enabled, otherwise t is disabled (the default 
value is true); Pri: TD +→IN  defines the priority 
functions for the firing of each transition.  The 
enabling of a transition with higher priority disables 

all the lower priority transitions; LTPl →∪: , is a 

labeling function that assigns a label to a place and a 
transition. In this way that maps place (or 
transition) name into condition (or action) names 
that β== )()( ni plpl  but ni pp ≠  (or 

α== )()( kj tltl  but kj tt ≠ ).                                n  

Figure 1a and Figure 1b summarizes the all possible 
ways of placing arcs in a HN net for discrete 
transition and continuous transition, respectively.  

 

 
Fig. 1. All the possible ways of placing arcs in a net. 
 
Definition 2. A marked  composite labeled HPN net is 
a pair HN = < ΓH , M0 >,  where ΓH  is a composite 
labeled HPN structure (see Def. 1) and M0=(m0, 

0x ) 

is the initial marking of the net. 
The current marking of net is  M=(m, x ), where 

+→ INPD:m and
+→ IRPC:x . The vector-column 

),0,( Diiii Ppmpm ∈∀≥=m  with ii pm  is the 

number im of tokens in discrete place, and it is 
represented by the black dots. 
The ),,( min

Ckkkkk Pbxxbx ∈∀≥=x  is vector-

column, where kk bx  is the fluid level kx  in 

continuous place kb , and it is the real number.      n 

Definition 3. A composite labeled HSPN net as a 3-
tuple, >=< VHNSHN ,, θ , where: 
HN is a marked composite HPN, (see def. 2), where 
the set of discrete transitions TD is partitioned into 

000 =∩∪= ττ TT,TTTD  so that τT  is a set of 

timed transitions (exponentially distributed firing) 
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and 0T  is a set of immediate transitions (fire in zero 

time once they are enabled). The Pri(T0)>Pri(Tτ ). A 

timed transition tj∈Tτ is drawn as a black 

rectangle and has a firing rate is associated to it. An 
immediate transitions tj∈Ti is drawn with a black 
thin bar and has a constant zero firing time. Let 
T(M)  denote the set of enabled transitions in current 
M = (m, x); 

+→× RIPBagTD )(:θ  is the firing speed 
function associated with the discrete transitions TD so 
that: a) thus a timed transitions )M(Tt τ∈  is enabled 

in current (tangible)  marking M , it fires with rate 
)M,t()M,t( λ=θ . Note once again, we do allow 

the firing rate to be dependent on fluid levels; b) thus 
a immediate transitions )(0 MTt ∈ is enabled in 

current (a vanishing) marking M, it fires with 
probability: 

∑
∈

θθ=
)M(Tt

'

'
)M,t(/)M,t()M,t(q

0

; 

+→× IRPBagTV C )(: is the marking-dependent 

fluid rate function of timed continuous 
transitions CT . Thus rates appear as labels next to the 

continuous timed transitions. If Cj Tt ∈  is enabled 

in tangible marking M it fires with fluid rate Vj(M), 
which is a normally distributed random variable, that 
is specified by the distributions expectation v(t,M) 
and the squared coefficients Kv(t,M) of variance 

2σ (t,M)=v(t,M)⋅Kv(t,M).                                         n                                                                     
Enabling and Firing of Transitions.  Given a Tt j ∈ , 

we denote }0),(Pr:{ >∈=•
jiij tpePpt  the input 

and }0),(:{ >∈=•
jiij tpPostPpt  output set places of 

jt , and with }0),(:{ >∈= jiij tpInhPpto  the 

inhibition and }0),(:{* >∈= jiij tpTestPpt  the test 

set places of transition jt , respectively. Also, in 

following we denote by Ck Tu ∈  the continuous 

transitions and by Ck Pb ∈  the continuous places can 
be distinct it between discrete transitions and 
continuous places, respectively. Let T(M) the set o 
enabled transitions in current marking M. We say that 
a discrete transition )(MTt Dj ∈ is enabled in current 

marking M if the following logic expression 
(enabling condition )( jd tec ) is verified: 

&)),(Pr(()( jii
tp

jd tpemtec
ji
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The transition )(MTt Dj ∈ fire if no other 

transition )(MTt Dk ∈  with higher priority has 

enabled. Also, we say that a continuous transition   
)(MTu Cj ∈ is enabled and continuously fire in 

current marking M if the following logic expression 
(the enabling condition )( jc uec ) is verified: 
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and no transition with higher priority has concession.  
If an immediate discrete transition has  concession in 
marking M = (m, x), it is enabled and the marking is 
vanishing. Otherwise, the marking is tangible and 
any timed discrete transition with concession is 
enabled in it. 
An immediate discrete transition jt  enabled in 

marking M = (m, x ) yields a new vanishing marking 
M ’ = (m’, x. We can write (m, x) [tj >(m’, x). If the 
marking M = (m, x) is tangible, fluid could 
continuously flow through the flow arcs Ac of 
enabled continuous transitions into or out of fluid 
places. As a consequence of this, a transition tc is 
enabled  at M iff for every ,cc tp •∈  x(pc)>0, and its 

enabling degree is: 
enab(tc ,M)=

tpc
•∈

min {x(pc)/Pre(pc, tc)}. 

In the HN, the potential rate )(Miβ of change of fluid 

level in place  i Cp P∈  in marking current M  is given 

by: )(Miβ =
, ,

( )

[ ( ) ( )]
k

k i i k
t T M

V M V M
∈

−∑   , where, for any 

given 
k Ct T∈  , 

, ( )k iV M   is an input fluid rate of fluid 

place
i Cp P∈  and , ( )i kV M  is an output fluid rate of 

this place. We allow the firing rates and the enabling 
functions of the timed discrete transitions, the firing 
speeds and enabling functions of the timed 
continuous transitions, and arc cardinalities to be 
dependent on the current state of the HSN, as defined 
by the current marking ( )M τ .  
The reachability graph of HSN are isomorphic to 
hybrid continuous-time Markov chains (HCMC) and 
this describe the dynamics of an HSN can be 
represented by a system of partial differential equa-
tions (PDE) in a probability density of state. In 
(Gutuleac, 2002) is derived thus type of equations 
which describe the steady-state behavior of the 
underlying HCMC of a HSN.  



In the following, if not are mentioned apart, we 
assume that Pri(tj) = 0 and g(tj,M) = 1 and therefore 
we can omit Pri(tj) and g(tj,M) in the formal 
definitions of DE element of compositional 
operations and its HSN translations. 
 

3. DESCRIPTIVE EXPRESSIONS OF HPN 
 

Due to the space restrictions we will only give a brief 
overview to this topic and refer the reader to 
(Gutuleac, 2004) and the references therein. 
In following for abuse of notation, labels and name 
of transitions/ places are the same. 
We introduce the concept of a basic descriptive 
element (bDE) for a basic HPN (bHN ) as following: 

k

k

j

j tiiiit WWpmbDE αα |],[| 0 −+= . The translation of 

this bHN is shown in figure 2a, where respectively 

ij pt •=  is input transition (action type jα ) and 

•= ik pt is the output transition (action type kα ) of 

place Ppi ∈  with )}(,)({ 00
0

iii bxpmm ∈  initial 

marking, and respectively the flow type relation 
functions ),(Pr iji pteW =+ and ),(

kii
tpPostW =− , 

which return the multiplicity of input and output arcs 
of the discrete place

Di Pp ∈  or the continuous 

place
Cii Pbp ∈= , respectively.  

The derivative elements of bDE are 

for 0, =∅= −•
ii

Wp   is ][| 0
iiit Wpmj

j

α
 with final 

place ip  of jt  and for 0=∅= +•
ii W,p   

is k

ktiii Wpm α|0
 with entry place ip  of kt  (see figure 

2b). If the initial marking 0
im of place ip is a zero 

tokens (or fluid level) we can omit 00 =im in bDE. 
By default, if the type of action α  is not mentioned 

this to match the name of a transition t. From a bDE  
we can build more complex DE of PN components 
by using composition operations.  

 
 
Also by default, if 1== −+

ii WW , we present bDE 
and it derivatives as following: 

 
k

k

j

j tiit pm αα || 0
,  iit pmj

j

0| α
  or  k

ktii pm α|0
.  

Definition 4. A descriptive expression (DE) of a 
labeled composite HN is either bDE or a composition 
of DE a HN:    DE :: = bDE | DE ∗DE | o DE  , 

where ∗  represents any binary composition operation 
and o any unary operation.                                       n  
Descriptive Compositional Operations. In the 
following by default the labels of HN and HN are 
encoded in the name of the transitions and places. 
The composition operations are reflected at the level 
of the DE components of HN models by fusion of 
places, fusion of transitions with same type and same 
name (label) or sharing of as subnets. 
Place-Sequential Operation. This binary operation, 
denoted by the “ | ” sequential operator, determines 
the logic of a interaction between two local states 

ip (pre-condition) and kp  (post-condition) by jt  

action that are in precedence and succeeding 
(causality-consequence) relation relative of this 
action. Sequential operator is the basic mechanism to 
build DEs of HNs models. 
The sequential operation is an associative, reflexive 
and transitive property, but is not commutative 

operation. The ][|][1 00
kkktiii WpmWpmDE j

j

α=   

][|][ 00
iiitkkk WpmWpm j

j

α≠  means the fact that the 

specified conditions (local state) associated with 
place- symbol ip are fulfilled always happens before 
then the occurrence of the conditions associated with 
place-symbol kp by means of the action jt . The 

translation of DE1 in HN1is shows in figure 3. Also, 
the PN modeling of the iteration operation is 
obtained by the fusion of head (entry) place with the 
tail (final) place that are the same name (closing 
operation) in DE which describes this net. The self-
loop of HN2 described by an: 

      ][|][2 00
kkktiii WpmWpmDE j

j

α= j

jtiii Wpm α|][~0= ,  

it is the test operator “~”, i.e. represent the test arc. 

 
 

Fig. 3. Translation of DE1 in HN1. 
 
Inhibition Operation. This unary operation is 
represented by inhibitory operator “ –  “  (place-

symbol with overbar) and it j

jtiii WpmDE α|][3 0=  

describe the inhibitor arc in HN  models with a weight 
function (arc multiplicity)  ),( jii tpInhW = .  

Synchronization Operation. This binary operation  is                  
represented by the “• ” or “ ∧ ” join operator describe 
the rendezvous synchronization (by transition jt )   of 

a two or more conditions represented respectively by 
symbol-place ji tp •∈ , ni ,1= , i.e. it indicate that all 

preceding conditions of occurrence actions must have 
been completed. Also, this operation is a 
commutative, associative and reflexive property.  
Split  Operation: This binary operation represented by 
the “◊ ” or “(◊ )” split or fork  operators and it 
describe, determine the causal relations between 
activity tj and its post-conditions: after completion of 

 Fig. 2.  Translation in bHN (a) of  bDE  
         and (b) its derivatives. 
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the preceding action of tj concomitantly several other 
post-condition can take occurs in parallel (“ message 
sending”). Property of split operation is a 
commutative, associative and reflexive. 
Thus the HN shows in figure 1a and figure 1b are 
described by the DE’s A and B, respectively: 

)(|1 341
bpAA t ◊= ; )35.6(|1 321

bbBB u ◊=  with 

1
|)5.45

~
5.1~3214.2(1 3423211 tbpbpppbA ⋅⋅⋅⋅⋅⋅= and 

1
|)5.4

~
6.3~14.2(1 345212 ubbbppbB ⋅⋅⋅⋅⋅=  

Competing Parallelism Operation. This compo-
sitional binary operation is represented by the “ ∨ ” 
competing parallelism operator, and it can be applied 
over two HNA with DEA = A and HNB with DEB = B  
or internally into resulting HNR with DER = R, 
between the places of a single HNR which the 
symbol-places with the same name are fused, 
respectively. 
We can then represent the resulting DER= 

BAR ∨= as a set of ordered pairs of places with the 

same name to be fused, with the first element 
belonging to A the second to B. The fused places will 
inherit the arcs of the place in A and B. Also, this 
compositional binary operation is a commutative, 
associative and reflexive property.  
Precedence Relations between the Operations. We 
introduce the following precedence relation between 
the compositional operations in the DE: a) the 
evaluation of operations in  DE are applied left -to-
right; b) an unary operation binds stronger than a 
binary one; c) the “• ”operation is superior to”/ ” and 
“ ◊ ”, in turn, its are superior the   ”∨ ” operation. 
Further details on definitions, enabling and firing 
rules, and evolution for discrete part of HN can be 
found in (Gutuleac, 2004) as they require a great deal 
of space. 
 

4. DISCRETE- CONTINUOUS MODELING OF 
PIPE-LINE MULTIPROCESSOR SYSTEM 

In order to illustrate HSPNs we give a performance 
modeling example. Consider a pipe-line 
multiprocessor system consisting of three processors 
elements PEj, j=1,2,3. Each element PEj can be in 
two local states }1,0{∈jα . In the active state 

1=jα , the element PEj with speed Vj will in 

continuous mode decrease the level xk of buffer bk , 
k=4-j and in the same time it will in continuous mode 
increase the level xj of buffer bj, j=1, 2, 3. In passive 
state 0=jα   it will not change them any more. The 

time sojourn of each element PEj in the respective 
states 1=jα  or 0=jα  are negative exponentially 

distributed random variable with rate jλ  or jµ . 

Hence the behavioral discrete and continuous 
behavior process of a PEj can represented by the 
descriptive expression DDE  and 

CDE  respectively. 

The superposed discrete-continuous behavior process 
of system is represented by the following descriptive 

expression DEsys of  HSN model:   

 CDsys DEDEDE ∨= , )||(
33

3

1
ititi

i
D pppDE i

i

i

i

µλ
++=

∨= , 

323212131
3

3

2

2

1

1
|)(|)(|)( bbpbbpbbpDE V
u

V
u

V
uC ⋅∨⋅∨⋅= . 

Figure 4 show the translation of DEsys in HSNsys. 

 
Fig. 4. Translation of  DEsys in HSNsys. 
 
The blocking effect of PEj in 1=jα is represented by 

capacity
 jb hK

j
= of  buffer bj if this is full.  

In the next, to we will note x1=x, x2=y and x3=z. 
The net HSNsys. is bounded, live and reinitialized 
again because it has four P-invariants that cover all 
places: m(pj) + m(pj+3)=1,  j=1,2,3 for discrete places 
and x + y + z = h for continuous places. 
For initial marking m(pj)=1, x0=y0=0, z0= h3=h1+h2 
then the current state of HSPN1 can be described by 
7-tuple (

yxxy ß,ß;,321 ααα ), where 
xß  and 

yß  are 

respective dynamic balances of buffers  b1 and b2.  
The analytical analysis of underlying HCMC of this 
HSNsys model in general case is very difficult. For 
this analysis to be must use the special tool. 
Here we give a simplified case for 032 ==λλ , where 
the elements PE2 and PE3 always will be in active 
state 132 == αα  and in this way, the element PE2 

(respective PE3) with the speed V2 (respective V3), 
will transfer the content of buffer b1 (respective b2) in 
buffer b2 (respective b3).  
 

  

The behavior of HSNsys depends of rapport between 
speeds Vj. For V1 > V2 > V3 the chain CHMC1, with 
the respective internal and boundary states, in 
considerate case, is represented in figure 5, where the 
discrete marking is }1,0{∈im  because just the 

element PEi can be or in passive or in active state.  
Let fi(x, y) denote the steady-state fluid density of 
CHMC1 in current marking (mi, xy), i=0,1. For each 

Fig. 5. CHMC1 of HSNsys. 



internal state (mi, xy; vx, vy), 0<x<h1 and 0<y<h2 of 
the chain CHMC1 the fi(x, y) obeys the following 
system of partial differential equations (PDE): 

+
∂

∂
⋅−+

∂
∂

⋅−
y

yxf
VV

x
yxf

V
),(

)(
),( 0

32
0

2
 

                  );,(),( 0101 yxfyxf λµ =                    (1) 

+
∂

∂⋅−+
∂

∂⋅−
y

yxfVV
x

yxfVV ),()(),()( 1
32

1
21

 

),(),( 0111 yxfyxf µλ = . 
For level yxz ˆˆ +=  the total values of two buffers 
b1 and b2 using the same approach, with the 
stationary condition )( 31131 VVV −< λµ , we obtain: 

2
'
01

'
0

1)0()( Vez zrπµϕ ⋅= , 
)()()( 31

'
03

'
1 VVzVz −⋅= ϕϕ , 

)/( 311311 VVVr −−= λµ  
.)))()((()( 31131113111 VVVVVVz −−+−= µλµλµ  

Because we know some filled and emptied numeric 
behaviour characteristics of buffer b1 for 

3,2,1,0 =∞<< ihi
 we can look the solution of PDE 

equations in following multiplicative form: 
),()(),( 000 yxyxf ψϕ ⋅=  

),,()()(),( 0111 yxfAyxyxf ⋅=⋅= ψϕ  where 

      ,)(,)( 21
00

xx eyeCx γγ ψϕ =⋅=           (2) 

),()(),()( 021011 yayxax ψψϕϕ == ⋅  

)( 2112111 VVVr −−= λµγ , 12 aAa = , 

)( 3231 VVVa −= . 

The value C is a constant obtained from the 
normalization condition, but γ1 and A are obtained 
like solution of characteristic equation of system 
PDE (1):  ,02 =−⋅+ ρAbA  where ,11 µλρ =  

( ) ( )( )212121 21 VVVVVVb −−−+= ρ . 
From this characteristic equation and from condition 
that density probability always is a positive value we 
obtain only one positive solution, A>0. Using what 
we determine ( ) ( )32211 VVVA −−+= λγµγ which give 

the second stationary condition 
21 VA γλµ −> . 

To write the boundary equation directly from graph 
of chain CHMC1 we introduce the notation: )0(iπ  or 

)( 1hiπ , thich are probabilities of boundary states of 

buffer b1 for x=0 or x=h1, but Q(0) or Q(h2) of buffer 
b2 for y=0 or y=h2, respectivelly. 
For each state with 

12 VV=ω  we can write the 
steady-state boundary equations: 

;)()( 103111 hVh ϕπωλ ⋅=⋅ ;)()()( 1132111 hVVh ϕπωλ ⋅−=⋅  
;)()()( 2132211 hVVhQ ϕωλ ⋅−=⋅ ;)0()()0( 12101 ϕπµ ⋅−=⋅ VV  

);0()0( 1301 ψµ ⋅=⋅ VQ .)()0()()0( 20032001 hQVhQ ϕψµ ⋅=⋅⋅  

The solution of this equation system is given by: 
,/)()0( 12110 µπ VVaC −⋅⋅=  

11
1311130 )(;)0( heVchVQ γωλπµ ⋅⋅== ,

22)()()( 322120
heVVVVhQ γ⋅−−= , 

22)()()( 123221
heaVVhQ γωλ ⋅−= . 

Taking in consideration thus relations we obtain the 
average levels x̂ and ŷ in buffers b1 and b2: 

[ ]2
11

2
11111113 )1())1()1((ˆ 11 γγγλµ γ aehahVCx h ++−++⋅= , 

[ ]DaVVVVVVhCy +−+−−⋅= ))()()(((ˆ 123232212 µλ , 
where 2

22
2
2222 )1())1)(1( 22 γγγ γ aehaD h ++−+= . 

The time redundancy of system is a: 
2/ˆˆ Vxx =τ  and 

3/ˆˆ Vyy =τ . The some considerations hold for the 

throughput of system. 

CONCLUSIONS 
 

In this paper we have defined a set of descriptive 
composition operation and descriptive expressions 
for the creation of HSPN models from the behavioral 
state based discrete-continuous process of system 
components. The descriptive compositional approach 
can preserve the functional structure of the model 
and support several type of communication between 
components. In this way we support the performance 
modeling of distributed and parallel systems where 
both synchronous and asynchronous communication 
is required. To illustrate the use of this approach, we 
apply them to a performance modeling a pipe-line 
multiprocessor system. 

The translation rules of descriptive expressions 
into HSPN model summarized and illustrated in this 
paper suggest that it may be possible to develop a 
tool to combining the visualization of small 
components by mean of HSPN and the composition 
mechanisms of this approach. 
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